Replica exchange statistical temperature molecular dynamics algorithm.
نویسندگان
چکیده
The replica exchange statistical temperature molecular dynamics (RESTMD) algorithm is presented, designed to alleviate an extensive increase of the number of replicas required as system size increases in the conventional temperature replica exchange method (tREM), and to obtain improved sampling in individual replicas. RESTMD optimally integrates multiple STMD (Phys. Rev. Lett. 2006, 97, 050601) runs with replica exchanges, giving rise to a flat energy sampling in each replica with a self-adjusting weight determination. The expanded flat energy dynamic sampling range allows the use of significantly fewer STMD replicas while maintaining the desired acceptance probability for replica exchanges. The computational advantages of RESTMD over conventional REM and single-replica STMD are explicitly demonstrated with an application to a coarse-grained protein model. The effect of two different kinetic temperature control schemes on the sampling efficiency is explored for diverse simulation conditions.
منابع مشابه
Molecular Dynamics Simulations using Temperature Enhanced Essential dynamics Replica EXchange (TEE-REX)
Todays standard molecular dynamics (MD) simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large numbe...
متن کاملMultiplexed-replica exchange molecular dynamics method for protein folding simulation.
Simulating protein folding thermodynamics starting purely from a protein sequence is a grand challenge of computational biology. Here, we present an algorithm to calculate a canonical distribution from molecular dynamics simulation of protein folding. This algorithm is based on the replica exchange method where the kinetic trapping problem is overcome by exchanging noninteracting replicas simul...
متن کاملMolecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.
Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of...
متن کاملEnhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration
We review a selection of methods for performing enhanced sampling in 1 molecular dynamics simulations. We consider methods based on collective variable biasing 2 and on tempering, and offer both historical and contemporary perspectives. In collective3 variable biasing, we first discuss methods stemming from thermodynamic integration that 4 use mean force biasing, including the adaptive biasing ...
متن کاملMicrocanonical replica exchange molecular dynamics simulation of proteins.
We present microcanonical replica exchange molecular dynamics simulations as an alternative to canonical ones. Its advantage is the easily tunable high acceptance rate for replica exchange. We present the theory, comment on its actual implementation, and demonstrate its application for a common test case, the trp-cage protein.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 29 شماره
صفحات -
تاریخ انتشار 2012